Abstract

Establishing analytical models at the nanoscale to interpret the mechanical and structural properties of vertically aligned carbon nanotubes (VACNTs) is complicated due to the nonuniformity in quality of as-grown samples and the lack of an accurate procedure to evaluate structural properties of nanotubes in these samples. In this paper, we present a comparative study of empirical methodologies to investigate the correlation between indentation resistance of multi-wall carbon nanotube (MWCNT) turfs, Raman features and the morphological properties of the turf structure using adaptive neuro-fuzzy system and probabilistic neural networks. Both methodologies provide comprehensive and innovative approaches for phenomenological modeling of VACNTs morphologies, mechanical properties and Raman Spectra using intelligent-based systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call