Abstract

Retrieval of Total Precipitable Water (TPW) using ground-based Global Navigation Satellite System (GNSS) observations is a challenging task due to its real‐time and high temporal resolution. In this paper, we present a method for establishing an analytic model for retrieving the total precipitable water (TPW) based on Global Navigation Satellite System (GNSS) observations over one-year period from 12 distributed stations across Thailand. The derived zenith total delay (ZTD) at all stations agrees well with the TPW data available from Global Data Assimilation System (GDAS) Numerical Weather Prediction (NWP) model. At first, a unique relationship between the ZTD and the TPW was established by taking into account of the variation of station altitudes. In addition, the bias correction technique using probability distribution function (PDF) matching was also applied to improve the final model. The inversion model of TPW from ZTD is then easily obtained using a numerical technique. The performance of our method has been successfully evaluated on an independent test data. This model can be useful in the further near real-time TPW measurements from widely available GNSS receivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call