Abstract

Accurate modeling of the electrical properties of impurities in semiconductors is essential for the mandatory support of the development of novel semiconductor devices by means of simulations. An appropriate modeling approach to determine the activation rate of dopants in silicon carbide is currently not available, which limits the predictability of process simulations. To remedy this fact, we propose an empirical model for the electrical activation of aluminum and boron impurities in silicon carbide for various annealing temperatures and total doping concentrations. The differences of the two acceptor-type dopants are discussed according to the model predictions and the activation ratios for various processing parameters are presented. The model was implemented into Silvaco’s simulation platform Victory Process and evaluated with respect to published experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.