Abstract

The empirical mode decomposition (EMD) of biological signals is used to detect reaction to physiological stimuli and to identify global trends in slowly changing variables. We applied EMD to analyze hemodynamic reaction to handgrip in 9 healthy males (aged 21.3 ± 0.3 years) and 10 male patients following coronary artery bypass grafting (aged 55 ± 6 years). Subjects squeezed a dynamometer with 30% of individually determined maximal force for 3 min. The aim of the study was to check whether the application of EMD to the signals could bring any objective quantitative or qualitative measures allowing one to distinguish physiological states of healthy subjects and patients. Hemodynamic data were collected using a battery-powered, ambulatory impedance cardiography device (ReoMonitor) incorporating a single ECG channel. Heart rate (HR), R-R interval (RR), stroke volume (SV), cardiac output (CO), left ventricular ejection time (ET), pre-ejection period (PEP), maximum amplitude of the dz/dt signal (Amp), and basic chest impedance (Z0) were calculated automatically using the software earlier developed for ReoMonitor. The dedicated computer program allows to calculate and display the dynamics of basic and derivative parameters, describing the impact of systolic time intervals on RR intervals, or the relationship between them (e.g. PEP/ET). The EMD procedure was applied to identify the components of each basic hemodynamic parameter and all their derivatives. We observed the most pronounced effect of handgrip in second and third intrinsic mode functions (IMF), which particularly manifested in parameters describing the ratio of systolic time intervals to the length of RR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.