Abstract

Ventricular arrhythmias (VA) are life-threatening pathophysiological conditions that seriously impact the normal functioning of the heart. Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the two well known types of VA. VF is the lethal of the VAs and could be characterized by its organizational progression over time. The success of cardiac resuscitation strongly depends on the type of VA, its evolution over time and response to therapy. Due to the time critical nature of VF, computationally efficient quantification of VAs and swift feedback are essential. This work attempted to arrive at computationally efficient and data-driven techniques based on Empirical Mode Decomposition for classifying and tracking VAs over time. The approaches are divided into two aims: (1) ‘in-hospital’ scenarios for characterizing the dynamics of VA episodes to assist clinicians in planning long-term therapy options, and (2) ‘out-of-hospital’ scenarios for providing near real-time feedback to detect/track the progression of VAs over time to assist medical personnel select/modify therapy options. Using an ECG database of 61 60-s VA segments obtained for classifying VT vs. VF and sub-classifying VF into organized VF (OVF) and disorganized VF (DVF), maximum classification accuracies of 96.7% (AUC = 0.993) and 87.2% (AUC = 0.968) were obtained for classifying VT vs. VF and OVF vs. DVF during ‘in-hospital’ analysis. Additionally, two near real-time approaches were presented for ‘out-of-hospital’ analysis where average accuracies of 71% and 73% were achieved for VT/VF and OVF/DVF classification, as well as demonstrating strong potential for monitoring VA progressions over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.