Abstract
This paper investigates the estimations of regression parameters and response mean in nonlinear regression models in the presence of missing response variables that are missing with missingness probabilities depending on covariates. We propose four empirical likelihood (EL)-based estimators for the regression parameters and the response mean. The resulting estimators are shown to be consistent and asymptotically normal under some general assumptions. To construct the confidence regions for the regression parameters as well as the response mean, we develop four EL ratio statistics, which are proven to have the χ2 distribution asymptotically. Simulation studies and an artificial data set are used to illustrate the proposed methodologies. Empirical results show that the EL method behaves better than the normal approximation method and that the coverage probabilities and average lengths depend on the selection probability function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.