Abstract

ABSTRACTThis paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.