Abstract
In this work, we study non-parametric hypothesis testing problem with density function constraints. The empirical likelihood ratio test has been widely used in testing problems with moment (in)equality constraints. However, some detection problems cannot be described using moment (in)equalities. We propose a density function constraint along with an empirical likelihood ratio test. This detector is applicable to a wide variety of robust parametric/non-parametric detection problems. Since the density function constraints provide a more exact description of the null hypothesis, the test outperforms many other alternatives such as the empirical likelihood ratio test with moment constraints and robust Kolmogorov-Smirnov test, especially when the alternative hypothesis has a special structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.