Abstract

Recent developments in empirical likelihood (EL) methods are reviewed. First, to put the method in perspective, two interpretations of empirical likelihood are presented, one as a nonparametric maximum likelihood estimation method (NPMLE) and the other as a generalized minimum contrast estimator (GMC). The latter interpretation provides a clear connection between EL, GMM, GEL and other related estimators. Second, EL is shown to have various advantages over other methods. The theory of large deviations demonstrates that EL emerges naturally in achieving asymptotic optimality both for estimation and testing. Interestingly, higher order asymptotic analysis also suggests that EL is generally a preferred method. Third, extensions of EL are discussed in various settings, including estimation of conditional moment restriction models, nonparametric specification testing and time series models. Finally, practical issues in applying EL to real data, such as computational algorithms for EL, are discussed. Numerical examples to illustrate the efficacy of the method are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.