Abstract

In this article, we consider empirical likelihood inference for the parameter in the additive partially linear models when the linear covariate is measured with error. By correcting for attenuation, a corrected-attenuation empirical log-likelihood ratio statistic for the unknown parameter β, which is of primary interest, is suggested. We show that the proposed statistic is asymptotically standard chi-square distribution without requiring the undersmoothing of the nonparametric components, and hence it can be directly used to construct the confidence region for the parameter β. Some simulations indicate that, in terms of comparison between coverage probabilities and average lengths of the confidence intervals, the proposed method performs better than the profile-based least-squares method. We also give the maximum empirical likelihood estimator (MELE) for the unknown parameter β, and prove the MELE is asymptotically normal under some mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.