Abstract
Empirical likelihood inference for parametric and nonparametric parts in functional coefficient ARCH-M models is investigated in this paper. Firstly, the kernel smoothing technique is used to estimate coefficient function δ(x). In this way we obtain an estimated function with parameter β. Secondly, the empirical likelihood method is developed to estimate the parameter β. An estimated empirical log-likelohood ratio is proved to be asymptotically standard chi-squred, and the maximum empirical likelihood estimation (MELE) for β is shown to be asymptotically normal. Finally, based on the MELE of β, the empirical likelihood approach is again applied to reestimate the nonparametric part δ(x). The empirical log-likelohood ratio for δ(x) is proved to be also asymptotically standard chi-squred. Simulation study shows that the proposed method works better than the normal approximation method in terms of average areas of confidence regions for β, and the empirical likelihood confidence belt for δ(x) performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.