Abstract

In this paper the empirical likelihood method due to Owen (1988,Biometrika,75, 237–249) is applied to partial linear random models. A nonparametric version of Wilks' theorem is derived. The theorem is then used to construct confidence regions of the parameter vector in the partial linear models, which has correct asymptotic coverage. A simulation study is conducted to compare the empirical likelihood and normal approximation based method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.