Abstract

Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric additive models: (i) additive mean regression with the identity link function, (ii) generalized additive mean regression with a known non-identity link function, and (iii) additive quantile regression. The proposed empirical likelihood ratio statistics for the unknown functions are asymptotically pivotal and converge to chi-square distributions, and their associated confidence intervals possess several attractive features compared to the conventional Wald-type confidence intervals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.