Abstract
In this paper, we apply the empirical likelihood method to heteroscedastic partially linear errors-in-variables model. For the cases of known and unknown error variances, the two different empirical log-likelihood ratios for the parameter of interest are constructed. If the error variances are known, the empirical log-likelihood ratio is proved to be asymptotic chi-square distribution under the assumption that the errors are given by a sequence of stationary α-mixing random variables. Furthermore, if the error variances are unknown, we show that the proposed statistic is asymptotically standard chi-square distribution when the errors are independent. Simulations are carried out to assess the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.