Abstract

Experimental synthesis of spinel peridotite phase assemblages for a range of compositions that mimic natural samples is used to derive a set of empirical geothermometers and geothermobarometers represented by multiple linear regression best-fit surfaces that link the variables of temperature, pressure, and composition. The calibrated geothermometers use reactions that govern the solubility of Al and Cr in both pyroxenes and the Mg–Fe exchange between silicates and spinel. Geothermobarometers map the Mg–Fe exchange between coexisting olivine and clinopyroxene and pyroxenes and Ca–Mg exchange between coexisting pyroxenes. Application of the geothermometers and geothermobarometers to suites of naturally occurring samples indicates that while reactions governing the Cr and Al solubility and solvus of orthopyroxene give useful estimates of ‘original’ mantle temperatures and pressures, respectively, comparable reactions for clinopyroxene yield estimates that are variably dependent on the transport phase of the sample suites. Temperature and pressure estimates from reactions governing Mg and Fe exchange between silicates and spinel and coexisting silicates are all sensitive to the later transport stage of the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.