Abstract

By means of identical cubic elements, we generate a partition of a volume in which a particle-based cosmological simulation is carried out. In each cubic element, we determine the gas particles with a normalized density greater than an arbitrarily chosen density threshold. By using a proximity parameter, we calculate the neighboring cubic elements and generate a list of neighbors. By imposing dynamic conditions on the gas particles, we identify gas clumps and their neighbors, so that we calculate and fit some properties of the groups so identified, including the mass, size and velocity dispersion, in terms of their multiplicity (here defined simply as the number of member galaxies). Finally, we report the value of the ratio of kinetic energy to gravitational energy of such dense gas clumps, which will be useful as initial conditions in simulations of gravitational collapse of gas clouds and clusters of gas clouds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call