Abstract

The use of a woven wire-mesh screen as part of a flooded-bed dust-scrubbing system is very popular in the underground coal mining industry. It is used in combination with a demister (mist eliminator) to remove dust from the dust-laden air. A study was conducted to measure the pressure drop across a flooded-bed wire-mesh screen at different airflow rates in one-phase (dry) and two-phase (wet) conditions. Two empirical relationships between pressure drop and air velocity were developed for dry and wet conditions, respectively. In both cases, the form of the empirical relationships was found to be similar to relationships given by Sabri Ergun for high velocity non-Darcy single and multi-phase flow through porous media. The experiments were repeated on a reduced-scale model of the wire-mesh screen, and the pressure-velocity relationships obtained from the full-scale prototype experiments were tested. The test results show validation of the full-scale empirical formulas on the small-scale model with an insignificant variation. This paper presents the empirical equations for pressure drop across the wire-mesh screen in dry and wet conditions. Researchers can use these equations as a tool to predict total pressure drops for wire-mesh screens of different scale sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call