Abstract

Anyone who has tried lighting a campfire on a windy day can appreciate how difficult it could be. However, despite real-life experience and despite laboratory experiments which have demonstrated that fire ignition risk dramatically decreases beyond a certain wind threshold, current fire weather indices (FWIs) do not take this effect into account and assume a monotonic relation between wind velocity and ignition risk. In this paper, we perform a global analysis which empirically quantifies the probability of ignition as a function of wind velocity. Using both traditional methods (a logistic regression and a generalized additive model) and machine learning techniques, we find that beyond a threshold of approximately 3–4 m/s, the ignition risk substantially decreases. The effect holds when accounting for additional factors such as temperature and relative humidity. We recommend updating FWIs to account for this issue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call