Abstract
We use Aerosol Robotic Network (AERONET) observation data to empirically determine how natural and anthropogenic aerosol categories (i.e. mineral dust, biomass burning, and urban-industrial aerosols) affect light extinction, showing that their radiative forcing varies strongly with the surface albedo. Generally, the radiative forcing depends on the aerosol loading, but the efficiency varies with the aerosol type and aerosol-radiation-surface interactions. Desert dust, biomass burning and urban-industrial aerosols can exhibit dramatic shifts in radiative forcing at the top of the atmosphere, from cooling to warming, at surface albedos from below 0.5 to above 0.75. Based on the linear relationship between the radiative forcing efficiency and surface albedo for aeolian aerosols, using Moderate Resolution Imaging Spectroradiometer (MODIS) AOT (Aerosol Optical Thickness) and surface albedo data, we characterized a large Asian dust event during the spring of 2001, and demonstrate its immense spatially varying radiative forcing, ranging from about −84.0 to +69.3 W/m2. For extensive Russian wildfires during the summer of 2010, strong radiative cooling forcing variability of biomass combustion aerosols is found, ranging from about −86.3 to +3.1 W/m2. For a thick urban-industrial aerosol haze over northern India during the winter of 2017, a large range of about −85.0 to −0.3 W/m2 is found. These wide ranges underscore the need to accurately define aerosol-radiation-surface interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.