Abstract

Accurate estimation of software development effort is a very difficult job.Both under estimation as well as over estimation can lead to serious consequences. So its very important to find a technique which can yield accurate results for software effort estimation. Here in our paper we have evaluated various machine learning techniques for software effort estimation like bagging, decision trees, decision tables, multilayer perceptron and RBF networks. Two different datasets i.e. heiatheiat dataset and miyazaki94 dataset have been used in our research. Decision trees outperform all other models in term of MMRE value. Results of machine

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.