Abstract

AbstractIt is well known that the response modification factor (R) takes into account the ductility, over‐strength, redundancy and damping of structural systems. The ductility factor has played an important role in seismic design, as it is a key component of R. In this study, the ductility factors (Rμ,MDOF) of special steel moment‐resisting frames are calculated by multiplying the ductility factor of single degree of freedom (SDOF) systems (Rμ,SDOF) with the multi‐degree of freedom (MDOF) modification factors (RM). The ductility factors (Rμ,SDOF) of SDOF systems are computed from non‐linear dynamic analysis undergoing different levels of displacement ductility demands and periods when subjected to a large number of recorded earthquake ground motions. To compute the Rμ,SDOF, a group of 1,860 ground motions recorded from 47 earthquakes were considered. RM factors are proposed to account for the MDOF systems, based on previous studies. A total of 108 prototype steel frames were designed to investigate the ductility factors, considering design parameters such as the number of stories (4, 8 and 16), framing systems (perimeter frames and distributed frames), failure mechanisms (strong column‐weak beam and weak column‐strong beam), soil profiles (SA, SC and SE in Uniform Building Code 1997) and seismic zone factors (Z = 0·075, 0·2, and 0·4 in UBC 1997). The effects of these design parameters on the Rμ,MDOF of special steel‐moment‐resisting frames were investigated. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call