Abstract
Classical outlier detection test methods such as Baarda test and Pope test are generally preferred in geodetic problems. They depend on the Least Square Estimation (LSE) and LSE is very sensitive to the variations of the model. The capacity of the LSE changes depending on the different significance level, different type of outlier, the number of outlier, magnitude of outlier, number of observations and the number of unknowns. In statistics, the power of test is the probability of rejecting the null hypothesis when the null hypothesis is false. It is a theoretical assumption and depends on the significance level α (Type I error) and β (Type II error). The different types of the outliers, such as random or non-random, affect the results of the test methods; but the power of test is the same for all different types of the outliers. In this study, empirical estimation of the power of test is presented as Mean Success Rate (MSR). The theoretical power of test and empirical MSR have been estimated for univariate model and linear model by using Baarda test; according to the obtained results, MSR can be used as empirical value of the power of test and capacity of the test models. Also, MSR reflects more realistic results than the theoretical power of test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.