Abstract

In this paper, we present an empirical balanced truncation method for nonlinear systems whose input vector fields are constants. First, we define differential reachability and observability Gramians. They are matrix valued functions of the state trajectory (i.e. the initial state and input trajectory), and it is difficult to find them as functions of the initial state and input. The main result of this paper is to show that for a fixed state trajectory, it is possible to compute the values of these Gramians by using impulse and initial state responses of the variational system. Therefore, balanced truncation is doable along the fixed state trajectory without solving nonlinear partial differential equations, differently from conventional nonlinear balancing methods. We further develop an approximation method, which only requires trajectories of the original nonlinear systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.