Abstract

A temporary anion is a short-lived radical anion that decays through electron autodetachment into a neutral molecule and a free electron. The energies of these metastable species are often predicted using empirical correlation methods because ab initio predictions are computationally very expensive. Empirical correlation methods can be justified in the framework of Weisskopf-Fano-Feshbach theory but tend to work well only within closely related families of molecules or within a restricted energy range. The reason for this behavior can be understood using an alternative theoretical justification in the framework of the Hazi-Taylor stabilization method, which suggests that the empirical parameters do not so much correct for the coupling of the computed state to the continuum but for electron correlation effects and that therefore empirical correlation methods can be improved by using more accurate electronic structure methods to compute the energy of the confined electron. This idea is tested by choosing a heterogeneous reference set of temporary states and comparing empirical correlation schemes based on Hartree-Fock orbital energies, Kohn-Sham orbital energies, and attachment energies computed with the equation-of-motion coupled-cluster method. The results show that using more reliable energies for the confined electron indeed enhances the predictive power of empirical correlation schemes and that useful correlations can be established beyond closely related families of molecules. Certain types of σ* states are still problematic, and the reasons for this behavior are analyzed. On the other hand, preliminary results suggest that the new scheme can even be useful for predicting energies of bound anions at a fraction of the computational cost of reliable ab initio calculations. It is then used to make predictions for bound and temporary states of the furantrione and croconic acid radical anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.