Abstract

Skewed t-copulas recently became popular as a modeling tool of non-linear dependence in statistics. In this paper we consider three different versions of skewed t-copulas introduced by Demarta and McNeill; Smith, Gan and Kohn; and Azzalini and Capitanio. Each of these versions represents a generalization of the symmetric t-copula model, allowing for a different treatment of lower and upper tails. Each of them has certain advantages in mathematical construction, inferential tools and interpretability. Our objective is to apply models based on different types of skewed t-copulas to the same financial and insurance applications. We consider comovements of stock index returns and times-to-failure of related vehicle parts under the warranty period. In both cases the treatment of both lower and upper tails of the joint distributions is of a special importance. Skewed t-copula model performance is compared to the benchmark cases of Gaussian and symmetric Student t-copulas. Instruments of comparison include information criteria, goodness-of-fit and tail dependence. A special attention is paid to methods of estimation of copula parameters. Some technical problems with the implementation of maximum likelihood method and the method of moments suggest the use of Bayesian estimation. We discuss the accuracy and computational efficiency of Bayesian estimation versus MLE. Metropolis-Hastings algorithm with block updates was suggested to deal with the problem of intractability of conditionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.