Abstract
Discrete-event simulation is a significant analysis tool for designing complex systems. In the research literature, several deterministic search algorithms have been linked with simulation for industrial applications; but there are few empirical comparisons of the various algorithms. This paper compares the Hooke–Jeeves pattern search, Nelder–Mead simplex, simulated annealing, and genetic algorithm optimization algorithms on variations of four industrial case study simulation problems. The simulation models include combinations of real variables, integer variables, non-numeric variables, deterministic constraints, and stochastic constraints. The genetic algorithm was the most robust, as it found near best solutions for all 25 test problems. However, it required the most replications of all the algorithms. The pattern search algorithm also found near best solutions to small- and medium-sized problems with no non-numeric variables, while requiring fewer replications than the genetic algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.