Abstract
Classification modeling is commonly used for predictive data mining to create models (classifiers) that can predict the values of qualitative variables. Ensemble classification is concerned with the creation of many base classifiers which are then combined into one predictive classification model. Positive-versus-negative (pVn) classification has recently been proposed in the literature as an ensemble classification method with a potential to provide high predictive performance. Many methods of combining base model predictions for ensembles have been reported in the literature. The purpose of this paper is to report on a study that was conducted to compare four methods of combining base model predictions for pVn ensemble classification. The four methods that were studied are the max rule, min rule, sum rule and product rule. The four rules were studied for classification tree and artificial neural network pVn ensemble classification using a benchmark dataset for computer network intrusion detection systems. The main conclusion from the studies is that the sum, product and min rules provide predictive performance which is at least as high as that provided by the max rule for pVn classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.