Abstract
The commonly used analytic bidirectional reflectance distribution functions (BRDFs) do not model goniochromatism, that is, angle-dependent material color. The material color is usually defined by a diffuse reflectance spectrum or RGB vector and a specular part based on a spectral complex index of refraction. Extension of the commonly used BRDFs based on wave theory can help model goniochromatism, but this comes at the cost of significant added model complexity. We measured the goniochromatism of structual color pigments used for additive color printing and found that we can fit the observed spectral angular dependence of the bidirectional reflectance using a simple modification of the standard microfacet BRDF model. All we need to describe the goniochromatism is an empirically-based spectral parameter, which we use in our model together with a specular reflectance spectrum instead of the spectral complex index of refraction. We demonstrate the ability of our model to fit the measured reflectance of red, green, and blue commercial structural color pigments. Our BRDF model enables straightforward implementation of a shader for interactive preview of 3D objects with printed spatially and angularly varying texture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.