Abstract
To reach an optimal acceptance sampling decision for products, whose lifetimes are Burr type XII distribution, sampling plans are developed with a rebate warranty policy based on truncated censored data. The smallest sample size and acceptance number are determined to minimize the expected total cost, which consists of the test cost, experimental time cost, the cost of lot acceptance or rejection, and the warranty cost. A new method, which combines a simple empirical Bayesian method and the genetic algorithm (GA) method, named the EB-GA method, is proposed to estimate the unknown distribution parameter and hyper-parameters. The parameters of the GA are determined through using an optimal Taguchi design procedure to reduce the subjectivity of parameter determination. An algorithm is presented to implement the EB-GA method. The application of the proposed method is illustrated by an example. Monte Carlo simulation results show that the EB-GA method works well for parameter estimation in terms of small bias and mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Reliability, Quality and Safety Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.