Abstract

BackgroundIn investigating differentially expressed genes or other selected features, researchers conduct hypothesis tests to determine which biological categories, such as those of the Gene Ontology (GO), are enriched for the selected features. Multiple comparison procedures (MCPs) are commonly used to prevent excessive false positive rates. Traditional MCPs, e.g., the Bonferroni method, go to the opposite extreme: strictly controlling a family-wise error rate, resulting in excessive false negative rates. Researchers generally prefer the more balanced approach of instead controlling the false discovery rate (FDR). However, the q-values that methods of FDR control assign to biological categories tend to be too low to reliably estimate the probability that a biological category is not enriched for the preselected features. Thus, we study an application of the other estimators of that probability, which is called the local FDR (LFDR).ResultsWe considered five LFDR estimators for detecting enriched GO terms: a binomial-based estimator (BBE), a maximum likelihood estimator (MLE), a normalized MLE (NMLE), a histogram-based estimator assuming a theoretical null hypothesis (HBE), and a histogram-based estimator assuming an empirical null hypothesis (HBE-EN). Since NMLE depends not only on the data but also on the specified value of Π0, the proportion of non-enriched GO terms, it is only advantageous when either Π0 is already known with sufficient accuracy or there are data for only 1 GO term. By contrast, the other estimators work without specifying Π0 but require data for at least 2 GO terms. Our simulation studies yielded the following summaries of the relative performance of each of those four estimators. HBE and HBE-EN produced larger biases for 2, 4, 8, 32, and 100 GO terms than BBE and MLE. BBE has the lowest bias if Π0 is 1 and if the number of GO terms is between 2 and 32. The bias of MLE is no worse than that of BBE for 100 GO terms even when the ideal number of components in its underlying mixture model is unknown, but has high bias when the number of GO terms is small compared to the number of estimated parameters. For unknown values of Π0, BBE has the lowest bias for a small number of GO terms (2-32 GO terms), and MLE has the lowest bias for a medium number of GO terms (100 GO terms).ConclusionsFor enrichment detection, we recommend estimating the LFDR by MLE given at least a medium number of GO terms, by BBE given a small number of GO terms, and by NMLE given either only 1 GO term or precise knowledge of Π0.

Highlights

  • In investigating differentially expressed genes or other selected features, researchers conduct hypothesis tests to determine which biological categories, such as those of the Gene Ontology (GO), are enriched for the selected features

  • For each GO category, the p-value used in binomial-based estimator (BBE) to estimate local FDR (LFDR) is computed based on the 2-sided Fisher’s exact test

  • normalized MLE (NMLE) is not taken into account because its performance depends on the data, and on the specified prior probability π0

Read more

Summary

Introduction

In investigating differentially expressed genes or other selected features, researchers conduct hypothesis tests to determine which biological categories, such as those of the Gene Ontology (GO), are enriched for the selected features. The biological information term may be, for instance, a Gene Ontology (GO) term [1,2] or a pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [3]. We call this problem the feature enrichment problem. We consider whether some specific biological categories are enriched for differentially expressed genes with respect to the reference genes

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.