Abstract

In this article, utilizing a scale mixture of skew-normal distribution in which mixing random variable is assumed to follow a mixture model with varying weights for each observation, we introduce a generalization of skew-normal linear regression model with the aim to provide resistant results. This model, which also includes the skew-slash distribution in a particular case, allows us to accommodate and detect outlying observations under the skew-normal linear regression model. Inferences about the model are carried out through the empirical Bayes approach. The conditions for propriety of the posterior and for existence of posterior moments are given under the standard noninformative priors for regression and scale parameters as well as proper prior for skewness parameter. Then, for Bayesian inference, a Markov chain Monte Carlo method is described. Since posterior results depend on the prior hyperparameters, we estimate them adopting the empirical Bayes method as well as using a Monte Carlo EM algorithm. Furthermore, to identify possible outliers, we also apply the Bayes factor obtained through the generalized Savage-Dickey density ratio. Examining the proposed approach on simulated instance and real data, it is found to provide not only satisfactory parameter estimates rather allow identifying outliers favorably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call