Abstract
Because of the high costs of microarray experiments and the availability of only limited biological materials, microarray experiments are often performed with a small number of replicates. Investigators, therefore, often have to perform their experiments with low replication or without replication. However, the heterogeneous error variability observed in microarray experiments increases the difficulty in analyzing microarray data without replication. No current analysis techniques are practically applicable to such microarray data analysis. We here introduce a statistical method, the so-called unreplicated heterogeneous error model (UHEM) for the microarray data analysis without replication. This method is possible by utilizing many adjacent-intensity genes for estimating local error variance after nonparametric elimination of differentially expressed genes between different biological conditions. We compared the performance of UHEM with three empirical Bayes prior specification methods: between-condition local pooled error, pseudo standard error, or adaptive standard error-based HEM. We found that our unreplicated HEM method is effective for the microarray data analysis when replication of an array experiment is impractical or prohibited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.