Abstract

Probe-based nucleic acid enrichment represents an effective route to enhance the detection capacity of next-generation sequencing (NGS) in a set of clinically diverse and relevant microbial species. In this study, we assessed the effect of the enrichment-based sequencing on identifying respiratory infections using tiling RNA probes targeting 76 respiratory pathogens and sequenced using both Illumina and Oxford Nanopore platforms. Forty respiratory swab samples pre-tested for a panel of respiratory pathogens by qPCR were used to benchmark the sequencing data. We observed a general improvement in sensitivity after enrichment. The overall detection rate increased from 73 to 85% after probe capture detected by Illumina. Moreover, enrichment with probe sets boosted the frequency of unique pathogen reads by 34.6 and 37.8-fold for Illumina DNA and cDNA sequencing, respectively. This also resulted in significant improvements on genome coverage especially in viruses. Despite these advantages, we found that library pooling may cause reads mis-assignment, probably due to crosstalk issues arise from post-capture PCR and from pooled sequencing, thus increasing the risk of bleed-through signal. Taken together, an overall improvement in the breadth and depth of pathogen coverage is achieved using enrichment-based sequencing method. For future applications, automated library processing and pooling-free sequencing could enhance the precision and timeliness of probe enrichment-based clinical metagenomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.