Abstract

An empirical approach is made in this investigation to predict the leached concentrations of sodium (Na), calcium (Ca), and potassium (K) in the effluents from a landfill site. Water at certain predetermined inflow filling rate is applied to a specific ponding depth, at the top of an experimental column filled with landfill refuse soil at the top (upper layer) and normal local soil at the bottom (base layer). The water infiltrates into the upper layer soil, percolates through the pores in upper and base layers, and in the process leaches the nutrients from the soils that are collected at the bottom of the column. The experimentations were for different combinations of heights of upper and base layer soils, water ponding depth, and inflow filling rates. The nutrient concentrations in the outflow leachates are measured using flame photometer. The observations showed mixed responses of leaching and trapping of nutrients in the soil layers for the various combinations. The experimental observations also inferred that the nutrient leaching is more for cases involving higher ponding depths and higher inflow filling rates. Empirical relationships with respect to the geometrical parameters, to predict the leached concentrations of Na, Ca, and K, are developed from the experimental observations using nonlinear least squares regressive techniques. Exponential equations gave the best empirical fit among various nonlinear relations in the regression technique. The empirical models also predicted well for each subcategory of independent variables that are substantiated by high correlation coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call