Abstract

Models have been developed to explain double-peaked plasma concentration-time profiles using mechanisms such as variable absorption and enterohepatic recirculation. Interruption of gastric emptying has also been shown to produce double-peaks, and this work proposes models for analysis of such data. In the presence of levodopa, gastric emptying is interrupted at times associated with double-peaks in pharmacokinetic profiles. Data from a simultaneous scintigraphy and paracetamol absorption study with levodopa was obtained, and models with compartments for stomach, intestine, central and peripheral tissue were developed to describe levodopa and paracetamol pharmacokinetics, including the double-peak phenomenon. The empirical model uses two gastric emptying parameter rates which are applied over separate time periods to describe the varying gastric emptying rate. The semi-mechanistic model uses a feedback mechanism acting via an effect compartment to link the plasma concentration of levodopa to the rate of gastric emptying, allowing levodopa pharmacokinetics to vary the rate of gastric emptying and give rise to a multiple-peaked plasma pharmacokinetic profile. The models were applied to plasma levodopa and paracetamol pharmacokinetic data with and without simultaneous analysis of scintigraphy data, in both cases giving a good fit and in the absence of scintigraphy data adequately predicting the stomach profile. For the semi-mechanistic model, the first-order constant governing gastric emptying was shown to switch between fast and slow values at a critical levodopa effect compartment concentration. New models have thus been proposed for analysis of plasma concentration profiles that exhibit double-peak phenomenon and applied successfully to levodopa data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call