Abstract

Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches.

Highlights

  • Biologists and paleontologists need dated phylogenies to test a host of evolutionary questions ranging from global phenomena like climatic-biotic interactions through time and intercontinental historical biogeography, to more local or taxon-specific processes, such as estimating rates of morphological change, origination, and extinction

  • We explore empirically the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils

  • Two are actively maintained by at least one of the authors, thereby providing a level of uniformity across datasets as to how the morphological characters are coded and scored. Other properties across these datasets include variation in taxonomic sampling density, different historical sampling intensities of their fossil records, as well as likely variable preservation potentials of the included taxa given the wide range in body size, habitat, and geographic provenance

Read more

Summary

Introduction

Biologists and paleontologists need dated phylogenies to test a host of evolutionary questions ranging from global phenomena like climatic-biotic interactions through time and intercontinental historical biogeography, to more local or taxon-specific processes, such as estimating rates of morphological change, origination, and extinction. Methods to assess the quality of calibrations [6,7,8,9], and to account for the effects of calibration uncertainty on molecular dating have become increasingly common [10,11,12,13] These advances are useful contributions to the scientific project of dating a tree of life. Most extinct lineages do not have extant members from which genomic data can be collected, and their relationships can only be estimated from fossil morphological data Dating these phylogenies is as important as dating trees of extant taxa for reconstructing the timetree of life

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call