Abstract

The COVID-19 has affected and threatened the world health system very critically throughout the globe. In order to take preventive actions by the agencies in dealing with such a pandemic situation, it becomes very necessary to develop a system to analyze the impact of environmental parameters on the spread of this virus. Machine learning algorithms and artificial Intelligence may play an important role in the detection and analysis of the spread of COVID-19. This paper proposed a twinned gradient boosting machine (GBM) to analyze the impact of environmental parameters on the spread, recovery, and mortality rate of this virus in India. The proposed paper exploited the four weather parameters (temperature, humidity, atmospheric pressure, and wind speed) and two air pollution parameters (PM2.5 and PM10) as input to predict the infection, recovery, and mortality rate of its spread. The algorithm of the GBM model has been optimized in its four distributions for best performance by tuning its parameters. The performance of the GBM is reported as excellent (where R2 = 0.99) in training for the combined dataset comprises all three outcomes i.e. infection, recovery and mortality rates. The proposed approach achieved the best prediction results for the state, which is worst affected and highest variation in the atmospheric factors and air pollution level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.