Abstract
The activated-TIG (A-TIG) process is a recognised process for achieving higher depth-of- penetration (DoP) and it could be used for various stainless-steel grades welding. The oxygen content of oxide based activated fluxes provide the extra heat during decomposition of flux and result into deep penetration. This study reveals the effect of short weld time of 2 sec in stationary arc, shielding environment (Ar and Ar + 2.5 % H2) and an effect of oxygen element in activated flux (CrO3 and SiO2) on the microstructure and weld metal micro-hardness. Use of hydrogen mix shielding gas during A-TIG process has significant impact on the dilution rate, grain size and dendrite arm spacing. The fraction of oxygen in the flux and the presence of silicon in SiO2 flux play a significant role in achieving higher DoP. To evaluate the impact of different shielding environment on grain growth, the samples were investigated with weld pool morphology, depth of penetration, weld chemistry, optical microscopy and SEM analysis. The extra heat produced due to oxygen fraction in activated flux and H2 induced shielding have been quantified in the study. The ferrite and austenite grain growth as well as the dendrite arm spacing found to be increased due to presence of H2 in shielding gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.