Abstract
Protein-deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11kcal/mol. The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.