Abstract

In this paper, event-triggered model predictive control (EMPC) with adaptive artificial potential field (APF) is designed to realize obstacle avoidance and trajectory tracking for autonomous electric vehicles. An adaptive APF cost function is added to achieve obstacle avoidance and guarantee stability. The optimization problem for MPC is feasible by considering a special obstacle avoidance constraint. An event-triggered mechanism is proposed to reduce computational burden and ensure effectiveness of obstacle avoidance. Input and state constraints of autonomous electric vehicles are considered in both feasibility and stability by a robust terminal set. Effectiveness of both obstacle avoidance and trajectory tracking is shown by experimental results on autonomous electric vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.