Abstract
Empathy is a vital factor that contributes to mutual understanding, and joint problem-solving. In recent years, a growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems. We refer to this topic as empathetic conversational systems. To identify the critical gaps and future opportunities in this topic, this paper examines this rapidly growing field using five review dimensions: (i) conceptual empathy models and frameworks, (ii) adopted empathy-related concepts, (iii) datasets and algorithmic techniques developed, (iv) evaluation strategies, and (v) state-of-the-art approaches. The findings show that most studies have centered on the use of the EMPATHETICDIALOGUES dataset, and the text-based modality dominates research in this field. Studies mainly focused on extracting features from the messages of the users and the conversational systems, with minimal emphasis on user modeling and profiling. Notably, studies that have incorporated emotion causes, external knowledge, and affect matching in the response generation models, have obtained significantly better results. For implementation in diverse real-world settings, we recommend that future studies should address key gaps in areas of detecting and authenticating emotions at the entity level, handling multimodal inputs, displaying more nuanced empathetic behaviors, and encompassing additional dialogue system features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.