Abstract

BackgroundEmpagliflozin is a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin also exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo.MethodsMale Sprague Dawley rats were randomly assigned to sham-operated, control or empagliflozin groups. All except for the sham-operated rats were subjected to 5-min left main coronary artery ligation followed by 20-min reperfusion. A standard limb lead II electrocardiogram was continuously measured throughout the experiment. Coronary artery reperfusion-induced ventricular arrhythmogenesis and empagliflozin therapy were evaluated. The hearts were used for protein phosphorylation analysis and immunohistological assessment.ResultsEmpagliflozin did not alter baseline cardiac normal conduction activity. However, empagliflozin eliminated myocardial vulnerability to sudden cardiac death (from 69.2% mortality rate in the control group to 0% in the empagliflozin group) and reduced the susceptibility to reperfusion-induced arrhythmias post I/R injury. Empagliflozin increased phosphorylation of cardiac ERK1/2 after reperfusion injury. Furthermore, inhibition of ERK1/2 using U0126 abolished the anti-arrhythmic action of empagliflozin and ERK1/2 phosphorylation.ConclusionsPretreatment with empagliflozin protects the heart from subsequent severe lethal ventricular arrhythmia induced by myocardial ischemia and reperfusion injury. These protective benefits may occur as a consequence of activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-independent manner.

Highlights

  • Empagliflozin is a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes

  • We evaluated the effects of empagliflozin on arrhythmia predisposition upon ischemic stimuli, i.e. main left coronary artery ligation and reperfusion

  • In consistent with our western blotting result, we found that p-ERK was phosphorylated in control and sham-operated hearts (P > 0.05); the positive expression of p-extracellular signal-regulated kinase1/2 (ERK1/2) protein was significantly increased in the empagliflozin-treated rats versus the sham-operated or control rats (Fig. 5H, P < 0.001)

Read more

Summary

Introduction

Empagliflozin is a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo. The EMPA-REG OUTCOME trial, including over 7000 diabetic patients with cardiovascular diseases, showed that empagliflozin, a SGLT-2 inhibitor, reduced risk of death from cardiovascular causes, and decreased risk of hospitalization for heart failure [2]. While no direct evidence has to our knowledge been hitherto presented to show that SGLT2 inhibitors, including empagliflozin, influence arrhythmogenesis during coronary artery disease progression or therapy, there is a possible link between empagliflozin and cardioprotective effects attenuating ischemia/reperfusion-induced ventricular conduction disturbances.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call