Abstract

AimsParkinsonism is characterized by degeneration of dopaminergic neurons and impairment in neuroplasticity. Empagliflozin (EMPA) is an anti-diabetic drug that has been shown to improve cognitive dysfunctions and exerted antioxidant and anti-inflammatory effects in different models. This study aimed to determine the neuroprotective effects of EMPA against rotenone (ROT)-induced parkinsonism. Main methodsROT (1.5 mg/kg) was injected subcutaneously three times per week for two successive weeks. Mice were treated with EMPA (3 and 10 mg/kg, orally) for one week prior ROT administration and for another two weeks along with ROT. After that, motor functions and histopathological changes were assessed, and brains were isolated for biochemical analyses and immunohistochemical investigation. Key findingsResults indicated that, in a dose dependent manner, EMPA improved motor functions and histopathological changes induced by ROT, increased brain content of reduced glutathione (GSH), dopamine (DA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear factor erythroid 2–related factor 2 (Nrf2), inositol trisphosphate (IP3), calcium (Ca2+), calcium/calmodulin-dependent protein kinase type IV (CaMKIV) and phospho-Protein kinase B (p-Akt) levels compared to ROT group. Additionally, EMPA decreased the levels of malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), and inactivated glycogen synthase kinase-3 beta (GSK-3β). Improvement in neuroplasticity was also observed indicated by elevation in brain derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and neuronal PAS domain Protein 4 (Npas4). SignificanceEMPA improved motor functions possibly through improving neuroplasticity markers and antioxidant, anti-inflammatory, and neuroprotective effects in a dose dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call