Abstract
Empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, has recently reported to prevent the depression as chronic animal model. However, its impact on neuroinflammation-mediated depression were remains unexplored. The present study aimed to explore the antidepressant potential of empagliflozin using a neuroinflammation-mediated depression involving the olfactory bulbectomy (OBX) model in rats. To establish this model, initially a low dose of streptozotocin was injected to induce diabetes in all group of animals. Following the confirmation of hyperglycemia, OBX surgery was performed. Post-surgery, the drug treatments were administered orally for 14 consecutive days. The study evaluated the effects of daily oral administration of empagliflozin at doses of 5 and 10 mg/kg, alongside metformin (200 mg/kg) and clomipramine (50 mg/kg), on OBX-induced behavioral depression in rats. Separate sham and vehicle control groups were also maintained. Behavioral parameters in open field, forced swim test, elevated plus maze and splash test were recorded on 28th day. Results showed that empagliflozin, particularly at the higher at the higher dose, significantly enhanced behavioral outcomes, evidenced by increased distance traveled, greater open arm entries, and reduced immobility, alongside a notable reduction in grooming time. Moreover, empagliflozin significantly restored the antioxidants level specifically Glutathione (GSH) and Catalase (CAT) in OBX insulted rat brain and reversed Lipid peroxidase (LPO). Notably, molecular docking study demonstrated a good binding affinity of empagliflozin for Brain-Derived Neurotrophic Factor (BDNF), suggesting that its antidepressant effects may be mediated through the modulation of the BDNF pathway. These findings support the potential therapeutic application of empagliflozin for depression, particularly in cases associated with neuroinflammation and oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.