Abstract

BackgroundDiabetes-induced cognitive impairment is a major challenge in patients with uncontrolled diabetes mellitus. It has a complicated pathophysiology, but the role of oxidative stress is central. Therefore, the use of antidiabetic drugs with extra-glycemic effects that reduce oxidative damage may be a promising treatment option. MethodsMale Wistar rats were randomly divided into four groups as normal, normal treated, diabetic and diabetic treated (n = 8 per group). Type 1 diabetes was induced by a single intraperitoneal dose of streptozotocin (STZ) (40 mg/kg). Two treatment groups received empagliflozin for 5 weeks (20 mg/kg/po). Cognitive ability was evaluated using open field, Elevated Plus Maze (EPM) and the Morris Water Maze (MWM) tests at study completion. Blood and brain tissue samples were collected - and analysis for malondialdehyde (MDA) and glutathione (GLT) content and catalase (CAT) and superoxide dismutase (SOD) enzyme activity were performed. Additionally, expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox-4) enzyme in brain tissue was analyzed using RT-PCR. ResultsSTZ increased blood glucose and induced diabetes with oxidative stress by lowering the antioxidant system potency and increasing Nox-4 expression after 5-weeks in brain tissue accompanied by reduction in cognitive performance. Also, diabetes induced anxiety-like behavior and impaired spatial memory in MWM, EPM and open field tests. However, empagliflozin reversed these changes, improving SOD and CAT activity, GLT content and reducing Nox-4 expression and MDA concentration in brain tissue while improving cognitive ability. It reduced anxiety and depression-related activities. It also improved spatial memory in MWM test. ConclusionUncontrolled diabetes negatively impacts mental function and impairs learning and cognitive performance via oxidative stress induction, the Nox-4 enzyme playing a central role. Empagliflozin reverses these effects, improving cognitive ability via promoting the anti-oxidative system and damping Nox-4 free radical generator enzyme expression. Therefore, empagliflozin is a promising treatment, providing both antidiabetic and extra-glycemic benefits for improving brain function in the diabetic milieu.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.