Abstract

Abstract. In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol−1 for the Fe/Ca and 1.68(±0.41) μmol mol−1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1σ[Mn/Ca] = 0.35–2.07 μmol mol−1; 1σ[Fe/Ca] = 93.9–188.4 μmol mol−1). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol−1) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol−1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol−1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.

Highlights

  • Various element to Ca ratios in foraminiferal calcite have been widely used to reconstruct chemical or physical properties in the ancient ocean

  • In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with secondary ion mass spectrometry (SIMS)

  • An iron rich phase has been found at the inner surface of the test walls and in the pores of several specimens of U. peregrina

Read more

Summary

Introduction

Various element to Ca ratios in foraminiferal calcite have been widely used to reconstruct chemical or physical properties in the ancient ocean. Boron isotopes in foraminiferal calcite became an important proxy for pH reconstruction (Spivack et al, 1993; Sanyal et al, 1995; Palmer et al 1998; Pearson and Palmer, 2000; Sanyal et al, 2001; Palmer and Pearson, 2003; Ni et al, 2007; Foster, 2008; Kasemann et al, 2009; RollionBard and Erez, 2010; Rae et al, 2011). The V/Ca ratio has been suggested as a proxy for redox-conditions (Hastings et al, 1996a, b and c) while the Ba/Ca ratio has been shown to record seawater compositions (Lea and Boyle, 1991; Lea and Spero, 1992, 1994). Ba/Ca ratios have already been used to trace deglacial meltwater in deep and intermediate water masses (Lea and Boyle, 1989, 1990a and b; Martin and Lea, 1998; Hall and Chan, 2004a, b)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call