Abstract
We consider the problem of inferring what happened to a person in a social task from momentary facial reactions. To approach this, we introduce several innovations. First, rather than predicting what (observers think) someone feels, we predict objective features of the event that immediately preceded the facial reactions. Second, we draw on appraisal theory, a key psychological theory of emotion, to characterize features of this immediately-preceded event. Specifically, we explore if facial expressions reveal if the event is expected, goal-congruent, and norm-compatible. Finally, we argue that <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">emotional expressivity</i> serves as a better feature for characterizing momentary expressions than traditional facial features. Specifically, we use supervised machine learning to predict third-party judgments of emotional expressivity with high accuracy, and show this model improves inferences about the nature of the event that preceded an emotional reaction. Contrary to common sense, “genuine smiles” failed to predict if an event advanced a person's goals. Rather, expressions best revealed if an event violated expectations. We discussed the implications of these findings for the interpretation of facial displays and potential limitations that could impact the generality of these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.