Abstract
If we want to recognize the human's emotion via the face-to-face interaction, first of all, we need to extract the emotional features from the facial image and recognize the emotional states. Our facial emotional feature detection and extracting based on Active Appearance Models (AAM) with Ekman's Facial Action Coding System (FACS). Our approach to facial emotion recognition lies in the dynamic and probabilistic framework based on Dynamic Bayesian Network (DBN). The active appearance model (AAM) is a well-known method that can represent a non-rigid object, such as face, facial expression. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with Facial Action Units of Facial Action Coding System (FACS) for automatically modeling and extracting the facial emotional features. Also, we use the Dynamic Bayesian Networks (DBNs) for modeling and understanding the temporal phases of facial expressions in image sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.