Abstract
Modeling correlations between multimodal physiological signals [e.g., canonical correlation analysis (CCA)] for emotion recognition has attracted much attention. However, existing studies rarely consider the neural nature of emotional responses within physiological signals. Furthermore, during fusion space construction, the CCA method maximizes only the correlations between different modalities and neglects the discriminative information of different emotional states. Most importantly, temporal mismatches between different neural activities are often ignored; therefore, the theoretical assumptions that multimodal data should be aligned in time and space before fusion are not fulfilled. To address these issues, we propose a discriminative correlation fusion method coupled with a temporal alignment mechanism for multimodal physiological signals. We first use neural signal analysis techniques to construct neural representations of the central nervous system (CNS) and autonomic nervous system (ANS). respectively. Then, emotion class labels are introduced in CCA to obtain more discriminative fusion representations from multimodal neural responses, and the temporal alignment between the CNS and ANS is jointly optimized with a fusion procedure that applies the Bayesian algorithm. The experimental results demonstrate that our method significantly improves the emotion recognition performance. Additionally, we show that this fusion method can model the underlying mechanisms in human nervous systems during emotional responses, and our results are consistent with prior findings. This study may guide a new approach for exploring human cognitive function based on physiological signals at different time scales and promote the development of computational intelligence and harmonious human-computer interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.