Abstract
Higher order statistics (HOS) is an efficient feature extraction method used in diverse applications such as bio signal processing, seismic data processing, image processing, sonar, and radar. In this work, we have investigated the application of HOS to derive a set of features from facial electromyography (fEMG) signals for classifying six emotional states (happy, sad, afraid, surprised, disgusted, and neutral). fEMG signals were collected from different types of subjects in a controlled environment using audio-visual (film clips/ video clips) stimuli. Acquired fEMG signals were preprocessed using moving average filter and a set of statistical features were extracted from fEMG signals. Extracted features were mapped into corresponding emotions using k-nearest neighbor classifier. Principal component analysis was utilized to analyze the efficacy of HOS features over conventional statistical features on retaining the emotional information retrieval from fEMG signals. The results of this work indicate an improved mean emotion recognition rate of 69.5% from this proposed methodology to recognize six emotional states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.